
Accelerating GHG Emissions Inference: A Lagrangian
Particle Dispersion Model Emulator Using Graph

Neural Networks

Elena Fillola
Department of Engineering Mathematics

University of Bristol, UK
elena.fillolamayoral@bristol.ac.uk

Raul Santos-Rodriguez
Department of Computer Science

University of Bristol, UK
elena.fillolamayoral@bristol.ac.uk

Matt Rigby
Atmospheric Chemistry Research Group

University of Bristol, UK
elena.fillolamayoral@bristol.ac.uk

Abstract

Inverse modelling systems relying on Lagrangian Particle Dispersion Models
(LPDMs) are a popular way to quantify greenhouse gas (GHG) emissions using
atmospheric observations, providing independent validation to countries’ self-
reported emissions. However, the increased volume of satellite measurements
cannot be fully leveraged due to computational bottlenecks. Here, we propose a
data-driven architecture with Graph Neural Networks that emulates the outputs of
LPDMs using only meteorological inputs, and demonstrate it in application with
preliminary results for satellite measurements over Brazil.

1 Introduction

Monitoring the accuracy of GHG emissions reporting is key to evaluate the efficacy of climate
agreements and support data-driven policymaking. Following IPCC guidelines, countries report
their emissions through national greenhouse gas inventories (NGHGIs), aggregating activity data
from sources and sectors together with country-specific emission factors. “Top-down” methods
present an alternative approach, quantifying the movement of GHGs (GHG fluxes) using atmospheric
observations. Incorporating real GHG measurements into the inference process enhances transparency
and accountability in climate change mitigation efforts by independently verifying self-reported
emissions, providing constraints on their uncertainties and identifying potential discrepancies.

Within the methods for GHG flux quantification, the IPCC recommends inverse modelling systems in
particular for comparing inventories against atmospheric measurements [1]. These models produce
estimates of the spatial distribution of GHG sources from observations, using an atmospheric transport
model and a statistical inversion framework. They have been used, for example, to evaluate methane
emissions in Europe using in situ sensors [2] and in India using satellite measurements [3], and they
were key to identifing the origin of unexpected CFC-11 emissions from eastern China [4], as well as
being used annually by the UK and Switzerland to evaluate their own emissions inventories [5].

These inference systems mentioned above were originally designed for relatively small datasets
using in situ measurements (thousands of global observations per month), but new satellite-based
instruments have increased the volume of GHG measurements by several orders of magnitude
(millions of measurements per day). This growth is causing severe computational bottlenecks for
GHG flux inference systems, particularly those relying on backward running Lagrangian Particle
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Figure 1: Samples of LPDM-generated footprints (top row) and the corresponding emulated footprints
(bottom row), for an area of size ≈ 3300×2500 km over Brazil. The date in each column and the red
cross in the centre of each image show when and where the satellite measurement was taken, and the
footprint indicates the area to which that particular measurement is sensitive to. Note the log10 scale.

Dispersion Models (LPDMs) to solve for atmospheric transport. LPDMs simulate gas “particles”
moving backwards in time from a GHG measurement location, producing a 2D histogram, known
as a footprint, which indicates the upwind areas where emissions would contribute to the observed
GHG measurement. To alleviate the computational requirements, existing approaches rely on
approximating LPDM footprints mostly by interpolating from nearby footprints [6, 7] or smoothing
of lower resolution simulations [8]. Currently, only [9] have developed a proof-of-concept emulator
that can output footprints solely from meteorology, and only [6] address directly footprints for satellite
measurements, which are more complex to produce.

In this paper, we propose a Graph Neural Network to output satellite footprints for any location in a
domain using only meteorological and topographical inputs, without needing nearby footprints or
further simulations for new measurements. Such a data-driven emulator could leverage the potential of
satellite data, potentially enabling near real-time, global emissions inference, improving transparency
and supporting countries without the necessary measurement infrastructure or computational resources
to evaluate their emissions reports. We demonstrate and evaluate preliminary results for satellite
measurements over Brazil, and describe further steps to impact.

2 Method

Our data-driven approach to LPDM emulation is based on previous Machine Learning (ML) ap-
proaches to meteorological forecasting, in particular [10] and [11], using message-passing Graph
Neural Networks (GNN) in an Encode-Process-Decode architecture. Meteorological forecasting and
particle dispersion simulations are closely related problems, sharing limitations and input data, but
there are some key differences. One of the main changes in implementation with respect to traditional
ML forecasting is that rather than using a fixed domain (i.e. the area covered by inputs and outputs is
always the same), we choose a moving domain setup, where the latitude-longitude grid for the inputs
and outputs is a square of side S centered around the measurement location.

Model The model is formed of three components, shown in figure 2: an Encoder, a Processor and a
Decoder. Meteorological data and other variables like topography are arranged in a latitude-longitude
grid, that represents the native data space. This data gets Encoded into an abstract mesh composed of
equilateral triangles. The data is Processed in this abstract layer, and then gets Decoded back to the
original data space, emulating the footprint value at each grid node. Representing the data as a graph
encourages flexibility in the setup: the input and output lat-lon grids don’t need to have the same
resolution, and the training can be done on a domain size Strain different than the testing size Stest.

In the Encoder (figure 2a), the input data for the grid nodes closest to each mesh node is aggregated
using some function and mapped to the mesh node using a multilayer perceptron (MLP). This function
should be permutation invariant and accept a variable number of inputs (e.g. mean or maximum, here
we use a distance-weighted mean). Another MLP encodes distance information in the mesh edges.
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(a) Encoder (b) Processor (c) Decoder

Figure 2: Local graph connectivity in the Encoder, Processor, and Decoder. Green crosses represent
nodes in the native data space (latitude-longitude grid) and yellow hexagons represent nodes in the
abstract mesh layer. Black arrows show information flow. The lat-lon grid is a square of side S (in
the image, S = 5) centred around the measurement point, shown as a red cross. a) Local information
is encoded into the nodes in the abstract layer using data from the closest grid nodes. Light yellow
projection shows the area of influence of each mesh node. b) Data encoded in the mesh nodes is
updated iteratively, processing information from neighbouring edges and nodes. c) The information
in the mesh nodes is decoded into the output value at each of the lat-lon coordinates, by aggregating
information from the N closest mesh nodes (here, N = 3).

In the Processor (figure 2b), we implement a message-passing GNN only in the abstract layer.
Message-passing GNNs, or graph networks, were defined in [12] and act as a graph-to-graph
module. Each message-passing block is built of two MLPs: one that updates edge features using the
neighbouring nodes and another MLP that updates node features based on a node’s neighbouring edges
and nodes (including itself). The Processor is built as a sequence of independent message-passing
blocks, which spread the information across neighbours.

In the Decoder (figure 2c), the final encodings of the mesh nodes are mapped back to the native data
space. The N closest mesh nodes to each grid node are aggregated and passed to a decoding MLP,
which outputs the footprint value at that lat-lon coordinate, performing node-level regression.

Metrics and evaluation The emulated footprints can be evaluated at four levels: on a pixel by
pixel level (e.g. MSE), on a footprint level (e.g. image similarity and segmentation metrics), on a
concentration level by convolving with the expected emissions in that area (see Appendix A), and at
an implementation level, using them for GHG quantification and comparing the estimated emissions
to those estimated with LPDM footprints. On a more qualitative side, the emulator can also be
evaluated on the balance achieved between performance and computational expense. For example,
[10] and [11] present results that are comparable or outperform the physical model, but train on 30+
years of data. Our goal is devising an emulator that can produce footprints that infer emissions within
uncertainty of the physics-based model, but minimise the computing and data requirements.

3 Application: emissions over Brazil

Data We use a subset of the footprints presented in [13], produced by NAME, the UK’s Met Office
LPDM, [14] for GOSAT measurements over Brazil for 2014, 2015 and 2016 (GOSAT stands for
Greenhouse gases Observing SATellite, launched in 2009 [15]). See [3] for more information on how
footprints for satellite are generated. At each node in the lat-lon grid, the model takes as inputs global
meteorology fields at different pressure levels and topography (extracted from the UK Met Office’s
Unified Model [16, 17]) as well as location variables, including the coordinates of each node and the
distance from the measurement point. The input and output lat-lon grids have the same resolution of
0.352◦×0.234◦ (≈ 33×25km). We sample the meteorology at the time of the measurement as well
as six and twelve hours before this, and use this as inputs to the network.

Training and calibration We train the model with a square lat-lon grid of side Strain = 50
gridcells centered around the measurement point (covering an area of ≈ 1650×1250 km) to reduce
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memory usage and computational expense, and we test on a grid of size Stest = 100 gridcells at
the same resolution, therefore covering an area of ≈ 3300×2500 km. We reduce the data volume
by sampling regularly in the time axis, using one in every three footprints. For these preliminary
results, we train on data for 2014-2015 (≈11000 data points after sampling), validate on the first
three months of 2016 (≈900 data points) and test on the rest of 2016 (≈4000 data points), using MSE
as a loss function. We manually optimise the parameters on the validation set, but comprehensive
parameter tuning should be conducted in further stages. All MLPs have two layers, ReLU activation,
and layer normalisation. All input variables are normalised to zero mean and unit variance, for each
pressure level if required. As the footprint values decay quickly with distance from the measurement
point, we apply a node-wise Box-Cox transformation followed by standardisation to ensure all output
values are closer to a normal distribution and are within the same range of values.

The outputs can be bias-corrected if needed using, for example, approaches from precipitation
modelling [18, 19]. We use the validation set (transformed back to the original data range) to define
a “footprint threshold” such that the threshold exceedance matches the above-zero frequency in the
LPDM-generated footprints [19]. In the test dataset, all values under this threshold are set to zero.

Preliminary results We use the setup described here to emulate footprints for GOSAT measure-
ments in Brazil in April-December 2016, and show some examples of the NAME-generated and
emulator-generated footprints in figure 1. Table 1 shows the evaluation metrics for the test dataset
at the pixel, footprint and concentration level. The accuracy obtained and the Normalised Mean
Absolute Error (NMAE) at a concentration level are comparable to those found by [9], which is
promising, given that emulating satellite footprints is a more difficult task than in situ measurement
footprints.

Although often with good spatial agreement, the emulator has room for improvement: the emulated
footprints are smoother than the LPDM ouputs, some meteorological conditions are better predicted
than others (due to an imbalanced distribution of wind directions etc.), and some geographical
locations prove challenging (e.g. the footprint over the Andes mountains in the second panel of
Figure 1). Moreover, the positive Mean Bias Error (MBE) indicates that the model has a tendency to
under-predict, also seen by [6] and [9], likely due to the imbalanced distribution of values and the
sparsity of the footprints.

Table 1: Performance metrics of footprint emulator with current setup. See A for metric definitions
Pixel-level metrics Footprint-level metrics Concentration-level metrics

MAE Dice similarity Accuracy R2 NMAE Mean Bias Error
1.1·10−4 57.2% ± 18% 65.8% ± 9% 0.448 0.3829 6.43

4 Next steps

Here, we describe a data-driven LPDM emulator that can infer footprints based only on meteorolog-
ical and topography data, and demonstrate its application over Brazil. This approach presents an
opportunity to leverage the growing volume of satellite data through well-known GHG emissions
inference methods, by accelerating one of the most computationally expensive steps of the inference
pipeline. Implementing this model in operational systems could make GHG emissions inference
faster and more scalable, paving the way for near-time, global emissions estimates. This integration
would also have far-reaching effects in data-driven policy making, as it would provide countries
and organisations with an accessible method to understand their emissions, independently verify
self-reported inventories and identify discrepancies in modelling. To achieve this effectively, the
emulator needs to be developed further and tested in diverse geographic regions beyond Brazil but
most importantly, implemented and evaluated with the full emissions inference pipeline.
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A Metrics

A.1 Segmentation Metrics

• Accuracy: Measures the spatial agreement of two footprints, giving true positives and true
negatives the same weight. It is calculated by creating a binary representation of the LPDM
footprints f above a certain threshold b (here b = 0):

F bin
t,i,j =

{
1, if ft,i,j > b

0, otherwise
(1)

and similarly calculating F̂ bin
t for the emulated footprints f̂ , and evaluating their spatial

agreement:

ACt = 100%×

∣∣∣F bin
t ∩ F̂ bin

t

∣∣∣+ ∣∣∣F bin
t ∩ F̂ bin

t

∣∣∣∣∣F bin
t

∣∣+ ∣∣∣F bin
t

∣∣∣
• Dice Similarity: Measures the spatial overlap of the true and predicted footprints. Applied

on F bin
t and F̂ bin

t as above,

DICEt = 100%×
2
∣∣∣F bin

t ∩ F̂ bin
t

∣∣∣∣∣F bin
t

∣∣+ ∣∣∣F̂ bin
t

∣∣∣
A.2 Concentration Metrics

The LPDM footprint can be convolved with a map of gridded emissions to provide the expected above-
baseline column-averaged mole fraction for that measurement location and time, by doing element-
wise multiplication of the two grids (Hadamard product) and summing over the area. However, here
we consider only the summed values of each footprint F tot

t =
∑

ij f(xi, yj , t) and similarly F̂ tot
t for

emulated footprints f̂ , to remove any potential influences from the emissions prior. This is equivalent
to convolving the footprints with a uniform emissions map of value 1. The two concentration
timeseries, where C is the concentration timeseries calculated with the LDPM-generated footprints
and arbitrary maps of gridded emissions, and Ĉ is the timeseries generated with the emulated
footprints and the same set of emissions, can be compared with the following metrics:

• R-squared score (R2): represents the proportion of variance in the true time series that is
explained by the emulated time series. It is calculated with

R2(C, Ĉ) = 1−
∑m

t=1(Ct − Ĉt)
2∑m

t=1(Ct − C̄)2
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• Normalised Mean Absolute Error (NMAE): MAE normalised by the mean of the true data,
making it a scale-invariant metric. It can be calculated as

NMAE(C, Ĉ) =
1

mC̄

m∑
t=1

∣∣∣Ct − Ĉt

∣∣∣
• Mean Bias Error (MBE): measures any systematic errors in the predictions, and is defined as

MBE(C, Ĉ) =
1

m

m∑
t=1

(Ct − Ĉt)
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